
MUSTARD: Adaptive Behavioral Analysis
for Ransomware Detection

Davide Sanvito, Giuseppe Siracusano, Roberto Gonzalez, Roberto Bifulco
NEC Laboratories Europe
{name.surname}@neclab.eu

ABSTRACT
Behavioural analysis based on filesystem operations is one of the
most promising approaches for the detection of ransomware. Nonethe-
less, tracking all the operations on all the files for all the processes
can introduce a significant overhead on the monitored system. In
this paper, we present MUSTARD, a solution to dynamically adapt
the degree of monitoring for each process based on their behaviour
to achieve a reduction of monitoring resources for the benign pro-
cesses.

1 INTRODUCTION
Ransomware attacks are a growing source of concern [1–3]. Among
the solutions proposed to address them [7, 8, 10], dynamic system
behavioural analysis is a promising approach. Indeed, most ran-
somwares access and modify many files in small time, thereby
exposing a peculiar behaviour, which is detected by solutions in the
state-of-the-art [4, 5, 11, 12]. These solutions apply a set of common
steps: (i) collection of features by monitoring Operating System
(OS) interfaces and accesses to the filesystems; (ii) analysis of the
collected features to build per-process behaviors; (iii) classification
of the modeled behaviors. These steps introduce a large overhead
on running systems, limiting their applicability in the real world.

In general, dynamic behavioural analysis methods rely on a set
of features that are collected at the OS level. Often, individual fea-
tures require the combination of raw counters collected at different
system/OS interfaces. Furthermore, while some features are as easy
as e.g., counting the number of file accesses, others include more
complex operations. Therefore, the monitoring overhead depends
both on the number of monitored features and on their types. For in-
stance, the time to copy a 10GB file is 10% longer when just enabling
the OS interfaces required for monitoring.1 Adding the simple read
and increment of a counter in a hash-table increases the overhead
to 20%. Furthermore, some features may require significantly more
compute intensive steps, e.g., computing the entropy of the written
data [4–6]. In our simple file copy test, computing such complex
features might increase the copy time by a factor of over 10x (from
GB/s to 100MB/s of write throughput).

We focus on reducing this monitoring overhead. Our idea is to
investigate the opportunity to monitor only a subset of the required
features at most times, enabling the collection of additional features
only when a monitored process exhibits a behavior compatible to a
ransomware. We build on the intuition that ransomwares perform
a set of unavoidable steps: listing files; accessing many of them;
reading and writing to the file; writing encrypted content. Only a
relatively small number of the OS processes perform a similar set
of steps, creating an opportunity to focus our monitoring on those.

1We run the test using Linux, ext4, and the recently introduced eBPF framework.

Figure 1: Workflow of the Multi-Stage approach: CS, features(CS) and
RF(CS) denote respectively the Current Stage and its corresponding input
features and Random Forest model.

Therefore, we build MUSTARD2, a monitoring system that dynam-
ically cascades a series of detection models, each of them using
an incremental number of features, in order to use few simpler
features for most monitored processes, and more complex ones
only for the processes that are suspected to be ransomwares. Using
a popular public dataset [9], we show that MUSTARD can keep detec-
tion performance, reducing monitoring overhead, at the cost of a
small increase in detection latency.

2 MUSTARD
We build MUSTARD, a Multi-Stage detection mechanism that uses an
increasing number of features at each detection stage. For each pro-
cess in the system, only few features are initially monitored, then,
depending on the result of the current step (i.e., suspect ransomware
or not), the number of monitored features is incremented for the
next stage. This keeps the monitoring overhead low, since complex
monitoring operations are progressively switched-on depending
on the needed features. That is, instead of always monitoring any
possible system/process feature, we increase the set of monitored
features depending on the behaviour of the monitored processes.

We perform analysis for each OS’ process using a pipeline of 𝑁
stages. Each stage implements a machine learning classifier trained
to differentiate among normal and malicious processes. The ma-
chine learning models in later stages have an increasing number of
input features. Fig. 1 summarizes the MUSTARD high-level workflow.

At runtime, all processes are periodically analyzed, i.e., at each de-
tection interval (tick). Nonetheless, each process may be analyzed
over time using a different model, i.e. one of the pipeline’s stages.
In fact, all processes are initially analyzed using the first stage. If a
process is marked as malicious (i.e., suspected ransomware) for 𝐾
consecutive ticks, then its analysis in the next tick will be exe-
cuted by the next stage based on an increased number of features.
This continues until the a process is classified as malicious in 𝐾
consecutive ticks, when using the last stage in the pipeline. In
such a case, the system classifies the process as ransomware.

2Multi-Stage Adaptive Ransomware Detection



In the remainder, we denote as MS(𝑓1, 𝑓2 ... 𝑓𝑁 ) the Multi-Stage
pipeline comprising 𝑁 models in cascade based on 𝑓1, 𝑓2 ... 𝑓𝑁 input
features, where 𝑓1 < 𝑓2 < ... < 𝑓𝑁 .
Detection interval. We perform detection at regular intervals,
called ticks. Instead of using time-based triggers, we rely on the
approach used in [4], where the detection mechanism is executed
every time a process interacts with a predefined number of files.
This approach: (i) minimizes the time to decision (avoiding waiting
the entire execution of the monitoring period); (ii) avoids unneces-
sary execution, e.g. when a process is frequently modifying a single
file; (iii) and makes the system more robust to ransomwares that
attempt time-based cloaking.
Features. The set of used features may vary depending on the
specific methods. In this paper we consider six main features: folder
listing; file read/write/rename operations; file type coverage; and
write entropy. This set of features was successfully tested in [4],
and covers most of the features used in the state of the art.
Classifier. We use a Random Forest (RF) as classifier in each stage.
For the tests in the next section, we implemented the RF using
scikit-learn using similar parameters to those of [4]: RFs are based
on 100 Decision Trees, 𝐾 = 3 and the detection interval is based
on a threshold of 0.1% of files. In our preliminary implementation,
we manually define the sequence of stages, i.e., which features are
added as input in each pipeline’s stage. This might introduce a
bias, since we are familiar with the dataset used in evaluation. In
our future work we plan to address this issue by automating the
pipeline design. Here, we are guided by two goals: (i) earlier stages
in the pipeline should introduce the lowest monitoring overhead;
(ii) earlier stages should have higher recall. In fact, for the first
pipeline stages we favor recall over precision, since false positives
can be filtered out by the downstream stages. At the same time,
if the early stages introduce little monitoring overhead, we have
an opportunity to avoid heavier monitoring for a large number of
non-malicious processes.

3 EVALUATION
For evaluation, we use a public dataset [9]. The dataset includes
one month of normal data captured from 11 real machines (1.7B
IRPs3 from more than 2000 applications for personal use, office
and software development). Malicious data comes instead from the
execution of 381 Windows Ransomware. Further details about the
features and the data collection are reported in [4].
Baseline. Our goal is to evaluate how incrementally adding fea-
tures impacts on the classification accuracy, latency and on the
monitoring overhead. Therefore, we compare MUSTARD against a
baseline classifier that uses all features at all times, and which is
representative of the current state-of-the-art methods, e.g., [4].4
The baseline classifier is equivalent to the MS(6) configuration.

We test MUSTARD changing the length of the pipeline (𝑁 ) and the
number of input features in each stage (𝑓𝑥 , 1 ≤ 𝑥 ≤ 𝑁 ). Results
are computed on 10 random train/test splits of the dataset (each
split takes into account processes, i.e., each process is either in the

3I/O Request Packets
4It should be noted that previous methods generally use a larger set of features than our
preliminary implementation. Nonetheless our evaluation shows that the first stages
achieve close to 100% recall, making our results valid even for cases that use a larger
set of features at later stages.

Figure 2: Detection performance
with RF model (K consecutive ticks)
when using from one to six features.

Figure 3: Detection performance
when features monitoring is incre-
mentally increased depending on the
detected behaviour.

Figure 4: Final decision stage for
MS(1,3,6) configuration.

Figure 5: Final decision stage for
MS(1,2,3,4,5,6) configuration.

train or in the test split). In all cases we report both the average
and standard deviation for the measured metrics, which are:

• True Positive Rate (TPR) or Recall (R): TP/(TP+FN)
• True Negative Rate (TNR) or Selectivity (S): TN/(TN+FP)
• Precision (P): TP/(TP+FP)
• F1-score: 2*P*R/(P+R)

Baseline vs number of features. First, we train six independent
RF models on an increasing number of input features (MS(1) to
MS(6)). The six models represent the individual per-stage models
of MUSTARD, with MS(6) being our baseline. Fig. 2 shows that the
TNR, F1-score and precision improve with more features. TPR in-
stead lowers. The high TPR of the first stages is good news for
MUSTARD, since this effectively means that such stages will select
most processes that are actual ransomwares (true positives) for
further analysis, while avoiding more features collection for a large
share of normal processes.
Multi-Stage performance. We then evaluate the performance
of three different MUSTARD configurations, with 2, 3 and 6 stages,
respectively, and for the baseline. Fig. 3 shows that all configu-
rations achieve performance comparable with the baseline. The
TPR slightly decreases with longer pipelines, whereas Precision
improves due to a reduced number of false positives (FPs), reflected
also in the TNR and F1-score improvements.
Last activated stage. We provide further insights on the results
checking in which stage each analyzed process is finally classified.
Fig. 4 shows this for theMS(1,3,6) pipeline, dividing the processes in
the 4 possible classification categories (true/false positive/negative).
The vastmajority (90%) of true negatives (TN), i.e., normal processes,
are classified in the first stage. These processes are monitored with
a single feature for their entire lifetime. True and false positives
(TPs and FPs) are always classified in the last stage, by design. It is

2



Detection latency
(baseline)

Additional ticks wrt baseline
MS(1,6) MS(1,3,6) MS(1,2,3,4,5,6)

min 3.0 +3.0 +6.0 +15.0
avg 8.2 +4.4 +8.6 +20.1
95p 41.2 +14.0 +17.0 +45.0
max 241.0 +49.0 +151.0 +166.0

Table 1: Detection latency when using the baseline and additional detec-
tion latency when using the Multi-Stage approach with 3 different configu-
rations. All the numbers are measured in ticks.

interesting to see that the (few) false negatives, i.e., ransomwares
classified as normal processes, are mostly mis-classified at the sec-
ond and last stage. The mis-classification in the middle stages might
be problematic, since ransomwares will never be analyzed by the
more powerful classifiers in the last pipeline stages. We see this
issue becoming more evident for theMS(1,2,3,4,5,6) pipeline (Fig. 5),
where 85% of the mis-classification happen in the middle stages.
This result suggests that, in operational settings, both the type of
classifiers and the pipeline length should be carefully selected to
minimize false negatives classifications in the middle stages.

In any case, MUSTARD achieves its original design goal: it keeps
comparable classification performance to the baseline, while moni-
toring only 10% of the TN processes with more than a single feature.
It should be noted that in terms of generated overhead, the TN pro-
cesses are the ones responsible for the most load, since they are
executed until termination. True and false positives, conversely, are
terminated as soon as they are classified.
Ransomware detection latency. MUSTARD requires a process to
progress until the last pipeline stage, before providing a ransomware
verdict. This increases the classification latency, which might be
problematic since a ransomware might have more time to operate.
We measure the detection latency in the number of ticks produced
by a process before a ransomware verdict is provided.

Table 1 reports the detection latency for the baseline and the
number of additional ticks required by MUSTARD under three con-
figurations. For both metrics we computed the min, average, 95-
percentile and max values. We conservatively report the worst
measured values across the 10 random splits.

As expected, we can observe that shorter pipelines provide
lower classification latency, with at most an additional 14 and 17
ticks for MS(1,6) and MS(1,3,6), respectively, in 95% of the cases.
MS(1,2,3,4,5,6) requires instead +45 ticks. The max value shows that
in some cases the detection latency might grow significantly.

Waiting an extra amount of ticks translates in a larger quota
of files being encrypted, before taking mitigation actions. In fact,
the tick definition is related to the number of files accessed by a
process (cf. Sec. 2). In our tests, a tick corresponds to 0.1% of all
files in the filesystem. Thus, in the best case the baseline classifies
a ransomware after it encrypted 0.3% of the files, whereas with
MUSTARD at minimum we measure 0.6%, 0.9% and 1.8% for the three
configurations. The worst case is 24.1% for the baseline, and 29%,
39.2% and 40.7% for the three MUSTARD configurations.

4 CONCLUSION AND FUTUREWORK
Our preliminary results show that MUSTARD could significantly re-
duce the monitoring overhead, limiting the number of collected
features for over 90% of the monitored processes. This is important,
since monitoring overheads can be large enough to make system

deployment unfeasible in real world settings. However, our work
is still preliminary and we are extending it to investigate several
issues.
Latency. First, MUSTARD introduces an increase in terms of classifi-
cation latency, which suggests a need to investigate the trade-off
between performance overhead and increased risk.
Overheadmeasurement. Second, using a public dataset we could
not measure the actual overhead introduced by feature collection
and classification. This requires collecting the dataset from scratch,
to assess the impact on the running system and the hosted work-
loads. We plan to extend our evaluation by creating our own dataset
to make a complete evaluation of the monitoring costs. This is an
aspect which is inherently system-dependent, and should be mea-
sured while capturing the dataset.
Hyperparameters. Third, MUSTARD includes (and inherits from the
state-of-the-art methods) several hyperparameters. Evaluating their
impact on the classification performance using multiple datasets is
crucial to avoid the pitfalls of data biases.
Cloaking. Finally, new ransomwaresmay devise techniques to hide
from the monitoring system. Evaluating MUSTARD in the context of
a challenging threat model that assumes attackers with full system
knowledge is also part of our future work.

Despite the challenges listed above, we believe MUSTARD pro-
vides an interesting direction for the exploration of the trade-offs
between monitoring overhead and risk mitigation. We believe that
investigating these trade-offs will become increasingly important
in the near future, to ensure the ability to deploy such systems in
production environments.

REFERENCES
[1] 2017. State of Malware Report. Technical Report. Malwarebytes. https://www.

malwarebytes.com/pdf/white-papers/stateofmalware.pdf Accessed July 2022.
[2] 2020. 2020 State of Malware Report. Technical Report. Malwarebytes. https://www.

malwarebytes.com/resources/files/2020/02/2020_state-of-malware-report.pdf
Accessed July 2022.

[3] 2022. 2022 Threat Review. Technical Report. Malwarebytes. https:
//www.malwarebytes.com/resources/malwarebytes-threat-review-2022/
mwb_threatreview_2022_ss_v1.pdf Accessed July 2022.

[4] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De Pasquale,
Alessandro Barenghi, Stefano Zanero, and Federico Maggi. 2016. Shieldfs: a
self-healing, ransomware-aware filesystem. In Proceedings of the 32nd annual
conference on computer security applications. 336–347.

[5] Amin Kharaz, Sajjad Arshad, CollinMulliner,William Robertson, and Engin Kirda.
2016. UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware.
In 25th USENIX security symposium (USENIX Security 16). 757–772.

[6] Kyungroul Lee, Sun-Young Lee, and Kangbin Yim. 2019. Machine learning based
file entropy analysis for ransomware detection in backup systems. IEEE Access 7
(2019), 110205–110215.

[7] Timothy McIntosh, ASM Kayes, Yi-Ping Phoebe Chen, Alex Ng, and Paul Watters.
2021. Ransomware mitigation in the modern era: A comprehensive review,
research challenges, and future directions. ACM Computing Surveys (CSUR) 54, 9
(2021), 1–36.

[8] Routa Moussaileb, Nora Cuppens, Jean-Louis Lanet, and Hélène Le Bouder. 2021.
A survey on windows-based ransomware taxonomy and detection mechanisms.
ACM Computing Surveys (CSUR) 54, 6 (2021), 1–36.

[9] NECSTLab. 2022. ShieldFS dataset. http://shieldfs.necst.it/. (2022). [Online;
accessed July 2022].

[10] Harun Oz, Ahmet Aris, Albert Levi, and A Selcuk Uluagac. 2021. A survey
on ransomware: Evolution, taxonomy, and defense solutions. ACM Computing
Surveys (CSUR) (2021).

[11] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin RB Butler. 2016. Cryp-
tolock (and drop it): stopping ransomware attacks on user data. In 2016 IEEE 36th
international conference on distributed computing systems (ICDCS). IEEE, 303–312.

[12] Kimberly Tam, Aristide Fattori, Salahuddin Khan, and Lorenzo Cavallaro. 2015.
Copperdroid: Automatic reconstruction of android malware behaviors. In NDSS
Symposium 2015. 1–15.

3

https://www.malwarebytes.com/pdf/white-papers/stateofmalware.pdf
https://www.malwarebytes.com/pdf/white-papers/stateofmalware.pdf
https://www.malwarebytes.com/resources/files/2020/02/2020_state-of-malware-report.pdf
https://www.malwarebytes.com/resources/files/2020/02/2020_state-of-malware-report.pdf
https://www.malwarebytes.com/resources/malwarebytes-threat-review-2022/mwb_threatreview_2022_ss_v1.pdf
https://www.malwarebytes.com/resources/malwarebytes-threat-review-2022/mwb_threatreview_2022_ss_v1.pdf
https://www.malwarebytes.com/resources/malwarebytes-threat-review-2022/mwb_threatreview_2022_ss_v1.pdf

	Abstract
	1 Introduction
	2 MUSTARD
	3 Evaluation
	4 Conclusion and future work
	References

