
KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models

Haris Widjaja∗1, Kiril Gashteovski∗2, Wiem Ben Rim2, Pengfei Liu1,4,
Christopher Malon3, Daniel Ruffinelli5, Carolin Lawrence2, Graham Neubig1,4

1 Carnegie Mellon University; 2 NEC Laboratories Europe;
3 NEC Laboratories America; 4 Inspired Cognition; 5 University of Mannheim;

Abstract

Knowledge Graphs (KGs) store information in
the form of (head, predicate, tail)-triples. To
augment KGs with new knowledge, researchers
proposed models for KG Completion (KGC)
tasks such as link prediction; i.e., answering
(h; p; ?) or (?; p; t) queries. Such models
are usually evaluated with averaged metrics on
a held-out test set. While useful for tracking
progress, averaged single-score metrics cannot
reveal what exactly a model has learned—or
failed to learn. To address this issue, we pro-
pose KGxBoard1: an interactive framework for
performing fine-grained evaluation on mean-
ingful subsets of the data, each of which tests
individual and interpretable capabilities of a
KGC model. In our experiments, we highlight
the findings that we discovered with the use of
KGxBoard, which would have been impossible
to detect with standard averaged single-score
metrics.

1 Introduction

Knowledge Graphs (KGs) are graph databases that
store information about entities and the relations
between them in the form of (head, predicate, tail)-
triples (Weikum et al., 2021). Because of their
flexible structure, KGs are used for storing gen-
eral real-world data (Rebele et al., 2016) as well
as domain-specific data covering various domains
(Abu-Salih, 2021), including medicine (Chandak
et al., 2022), IoT (Le-Phuoc et al., 2016) and fi-
nance (Cheng et al., 2020). KGs play an important
role in NLP: they are used for many downstream
tasks, including language modeling (Logan et al.,
2019), entity linking (Radhakrishnan et al., 2018)
and question answering (Saxena et al., 2022).

A common problem for KGs is that they are in-
complete (i.e., they do not contain all facts about
the world or the particular domain), which could

∗Equal contribution
1All resources (code, data, demo, video, etc.) are available

on https://github.com/neulab/KGxBoard

lead to limitations in performance for the down-
stream tasks. To tackle this problem of incomplete-
ness, the research community has worked on many
KG Completion (KGC) tasks, most prominently on
link prediction: predicting new facts within the KG
by providing ranked predictions to the queries (h;
p; ?) or (?; p; t) (Clouatre et al., 2021). Models
for KGC tasks are typically evaluated with single-
score metrics that are averaged over a held-out test
set. For instance, for a KGC query—e.g., (h; p;
?)—, hits@k indicates the average number of cor-
rect answers from the test set that appear within the
top-k ranked entities predicted by the KGC model.2

While using such scores is important for tracking
the progress of KGC models, researchers observed
that a more fine-grained evaluation is needed (Pal-
monari and Minervini, 2020), because the aver-
aged metrics cannot answer the question of what
properties have the models actually learned—or
failed to learn. To investigate what properties were
learned by the KGC models, researchers have de-
signed specific datasets and experimental setups.
For example, Rim et al. (2021) used the idea of
behavioral testing applied to NLP models (Ribeiro
et al., 2020) to perform more fine-grained tests for
relation symmetry. In particular, they measured the
performance of KGC models for queries that con-
tain symmetric relations; i.e., relations that are true
for both (h; p; t) and (t; p; h) such as (X; marriedTo;
Y). However, their proposed framework only con-
tains a limited number of tests and might not cover
model properties of interest to other researchers.

To make the fine-grained evaluation more
generic—and to compare different KGC mod-
els across different properties—we propose
KGxBoard: a method and software implementa-
tion for fine-grained evaluation of KGC models
(see illustration in Fig. 1). KGxBoard splits the
evaluated data into groups (buckets) according to
certain properties of the data. For instance, one can

2See Sec. 2 for more details about hits@k and other metrics

https://github.com/neulab/KGxBoard

Figure 1: Illustration of KGxBoard’s functionalities. With the single analysis mode, the user can see the overall
performance of a given KGC model, as well as the performance of the model across multiple buckets (i.e., partitions
of the evaluated data). For example, we observed that the TuckER model performs very well on triples with Many-
to-one (M-1) relations. However, it performs poorly on triples with One-to-many (1-M) relations and symmetric
relations. With the multiple analysis mode, the user can compare the overall and bucketized performance across
different models. Such a view enables the user to compare the models in a fine-grained manner; e.g., Rescal is
ranked 4th in the overall performance, but it is ranked 1st for the triples having symmetric relations. Likewise,
DistMult is ranked 5th in the overall performance and 1st for the triples with One-to-one relations. In both modes,
the user can interact with the UI to see details of the data buckets, change the evaluation metrics, etc.

split the test data into two buckets of data points
such that one bucket contains triples with symmet-
ric and the other with asymmetric relations. Conse-
quently, the users can observe the performance of
each of these buckets separately, while also having
an overview of the overall performance scores.

KGxBoard builds upon ExplainaBoard (Liu
et al., 2021), which is an explainable leaderboard
for NLP tasks. We adapt ExplainaBoard to the
KGC tasks3 by providing: (1) a method and soft-
ware implementation for fine-grained evaluation
of KGC models, integrated into ExplainaBoard;
(2) APIs for porting results from two popular
KGC frameworks—PyKeen (Ali et al., 2021) and
LibKGE (Broscheit et al., 2020)—directly into
KGxBoard format; (3) interface for reading cus-
tomized features for fine-grained evaluation; (4)
experimental study exposing problems with KGC
models that cannot be spotted with averaged scor-
ing; (5) experimental study showing that the find-
ings from the fine-grained evaluation of KGxBoard
can be used for automatic debugging of the models.

3KGxBoard can handle the KGC tasks on answering
queries of the form (?, p, t), (h, ?, t) and (h, p, ?). For simplic-
ity, when we refer to KGC models in this paper, we refer to
models that provide predictions of the form (h, p, ?).

2 Preliminaries

The performance of KGC models is evaluated on a
held-out test set of golden KG triples. In particular,
the models return a set of ranked answers to the
queries—e.g., (h; p; ?)—, where the correctness of
the answers is evaluated against the golden triples.
The final score is averaged over the examples from
the held-out test set. The standard scores used in
the literature are:

(1) Hits@k = 1
|D|

∑
(h,r,t)∈D 1[rank(t) ≤ k]

(2) MRR = 1
|D|

∑
(h,r,t)∈D

1
rank(t)

(3) MR = 1
|D|

∑
(h,r,t)∈D rank(t)

where D is the set of test triples, and h, r, t are the
head, relation and tail of the KG triple respectively.

3 KGxBoard’s Fine-grained Evaluation

Prior work in NLP has pointed to the issues of
using single-score metrics, which do not expose
what exact properties of the data were (or were
not) learned by the models (Narayan et al., 2021);
e.g., some information extraction models perform
poorly when there is a conjunction present in the

"custom_features": {
"rel_type": {

"dtype": "string",
"description": "predicate symmetry",
"num_buckets": 2

}
}

Figure 2: Defining custom features for bucketization of
the evaluation data (e.g., validation or test data).

sentence (Gashteovski et al., 2022). To better un-
derstand what properties were (or were not) learned
by the NLP models, people have proposed multi-
faceted or explainable and interactive leaderboards
(for more details on related work, see Appendix A).

Following ExplainaBoard (Liu et al., 2021), the
basic idea of KGxBoard’s fine-grained evaluation
is to breakdown the performance measure (e.g.,
Hits@10) over individual groups (buckets) in ad-
dition to the performance score over the overall
evaluation dataset. This approach involves three
steps: (i) define features upon which the evaluation
dataset is going to be partitioned; (ii) partition eval-
uation dataset into different buckets based on the
defined features; and (iii) calculate performance
w.r.t. each bucket. In contrast to ExplainaBoard,
KGxBoard is tailored for the KG completion tasks
and their evaluation metrics.

3.1 Feature definition

The feature definition describes the manner upon
which KGxBoard is going to partition the evalu-
ated data into buckets. For example, if the feature
is about predicate symmetry, then the data is di-
vided in 2 buckets: (1) triples that have predicates
which are considered symmetric;4 (2) triples with
asymmetric predicates. Because each data point
can be assigned to one of these buckets with a label
"symmetric" or "asymmetric" (strings), the user de-
fines the feature "predicate symmetry" accordingly
(as shown on Figure 2).

Built-in Features. KGxBoard supports several
built-in features that will automatically bucketize
the evaluation data of any models to be analyzed.
The built-in features include several widely used
properties of the data, such as predicate symmetry
(Trouillon et al., 2016) and entity type hierarchy
(Rim et al., 2021); see details in Appendix B.

4predicates that are true for both (h; p; t) and (t; p; h); e.g.,
the predicate p=marriedTo: (x; p; y) ⇐⇒ (y; p; x).

User
InterfaceBackend

Database

System output

Bucketize

CLI

SDK

LibKGE

PyKEEN

API

Figure 3: General overview of KGxBoard’s architecture.
SDK: Software Development Kit; CLI: Command-Line
interface.

Customized Features. KGxBoard also allows
users to customly define their own features by spec-
ifying additional information in the system output
file. If, for example, the users want to define the
bucketization features for predicate symmetry, then
they only need to specify this in a json file (Fig. 2).

3.2 Partitioning of Evaluation Data into
Different Buckets

For the built-in features, KGxBoard automatically
assigns each data point to its respective bucket. For
the customized features, once the custom features
were defined, the user should place each data point
to its respective customized bucket via the bucke-
tization functions (explained in Section 4.4). This
data is then fed into KGxBoard, which automati-
cally computes the relevant metrics for each bucket.

3.3 Calculate Performance w.r.t. each Bucket

KGxBoard computes the relevant metrics (de-
scribed in Section 2) for each bucket individually,
as well as for the overall evaluation dataset.

Confidence Interval. KGxBoard has been en-
dowed with the ability to quantify to what degree
we can trust the result of each bucket. Specifi-
cally, as illustrated in Figure 1, each bin has been
equipped with an error bar and its width reflects the
reliability of the bucket performance. KGxBoard
supports two ways to calculate the confidence in-
terval: bootstrapped re-sampling (Efron, 1992) and
t-test (Nakagawa and Cuthill, 2007) .

4 KGxBoard: System Overview

A general overview of the KGxBoard architecture
is illustrated in Figure 3. The users can provide the
data for the models through the front-end (via the

Figure 4: Using the frontend to upload a new model.

UI) or the back-end (via the CLI or the SDK). Then,
these results are stored in a database (DB), which
can be accessed and viewed either with the visual
interface, programmatically, or with the command-
line interface. In general, the users can choose
three ways to use KGxBoard’s functionalities: (i)
directly from the interactive web interface; (ii)
through an API from KGC frameworks (PyKEEN
and LibKGE); (iii) through the command-line in-
terface with already provided data.

4.1 Frontend
We adopt a React-based technology stack5 to cre-
ate an interactive web app as the frontend of
KGxBoard. Assuming that a user has generated the
input data in prior steps (e.g., through the API from
KGC libraries; see Section 4.3), she can upload the
data via the frontend interface (Figure 4). The data
is then passed on to the backend, which stores it
in a database. The frontend provides two types of
analysis of the models’ evaluation: single analysis
aims to identify the strengths and weaknesses of
a given KG completion model; pairwise/multiple
analysis can help users figure out where one model
is better (or worse) then the other when two (or
more) models are selected; for illustration of the
frontend, see Figure 1.

4.2 Backend
The backend is built on top of ExplainaBoard’s
backend code (Liu et al., 2021). The main function-

5https://reactjs.org/

alities for KGxBoard’s backend are: (i) defining
the evaluation metrics for the link prediction task:
Hits@k, MRR and MR; (ii) computing the overall
scores and the buckets’ scores with the built-in fea-
tures; (iii) handling customized feature buckets if
the user provided any; (iv) storing the results in the
DB; (v) communicate the results with the frontend
in an interactive manner.

4.3 API with KGC Libraries

KGxBoard comes with APIs that can translate
the output of two widely used KGC libraries—
PyKEEN (Ali et al., 2021) and LibKGE (Broscheit
et al., 2020)—into KGxBoard format. In particular,
the APIs write the system-output files in KGxBoard
format which does not contain buckets, only re-
sults from the models. If the user wishes to add
customized buckets, she can either write or reuse
already existing bucketization function(s), which
will rewrite the data in KGxBoard format with the
desired bucketizations.

4.4 Bucketization functions

The bucketization functions are procedures that do
two main actions: (1) define the buckets; (2) assign
a bucket label to each data example. Here’s an
example of a bucketization function pseudocode
that defines relations as being either symmetric or
assymetric:

s_rels -> set of symmetric rels.
def bucketize_rel_sym(s_rels):

define the buckets properties
bucket_name = "rel_sym"; dtype = "string"
descr="rel's symmetry prop."; num_buckets=2

assign bucket to example data
for triple in predict_data:

if triple['predicate'] in s_rels:
triple.bucket = 'symmetric'

else:
triple.bucket = 'asymmetric'

5 Experimental Study

To showcase the usefulness of KGxBoard, we con-
ducted the following experimental study: (1) buck-
etized comparison of models: we provide insights
on the buckets’ performance about different mod-
els trained with one KGC framework, which would
have been impossible to discover with standard
metrics; (2) comparison of models trained on dif-
ferent KGC frameworks with different hyperparam-
eter settings: showing how KGxBoard can be used
to discover differences between models trained in

https://reactjs.org/

different environments; (3) automatic debugging:
showing the ability of automatic debugging of the
models by using insights from certain buckets.

5.1 Experimental Setup

Datasets. We used two widely used datasets: (1)
FB15K-237 (Toutanova and Chen, 2015), con-
structed from Freebase (Bollacker et al., 2008),
covering relations between people, locations, etc.;
(2) WN18RR (Dettmers et al., 2018), constructed
from WordNet (Miller, 1992) and represents con-
nections between words in English, such as syn-
onyms and hypernyms. The models were trained,
validated and tested with the standard dataset split
(the reported results are on the test sets).

Models and KGC Frameworks. For our ex-
periments, we trained the KGC models on two
commonly used KGC frameworks: PyKEEN and
LibKGE. With PyKEEN we trained the following
models for link prediction: DistMult (Yang et al.,
2015), ConvE (Dettmers et al., 2018), RESCAL
(Nickel et al., 2011), RotatE (Sun et al., 2019),
TransE (Bordes et al., 2013) and TuckER (Balaze-
vic et al., 2019). PyKEEN provides hyperparame-
ters to reproduce the results of the original work of
a given model, which we used to train the models.
To compare the same models trained with differ-
ent hyperparameters and frameworks, we also used
the pretrained models obtained by Ruffinelli et al.
(2020) as a result of extensive hyperparameter op-
timization using LibKGE (Broscheit et al., 2020).
Specifically, we used the models ConvE, DistMult,
Rescal and TransE (see training details in App. D).

Bucketizations. We partitioned the test data into
different interpretable groups based on either built-
in or customized features (e.g., relation type). All
together, for FB15K-237 / WN18RR we have 303
/ 35 unique buckets respectively. The large differ-
ence in the number of buckets between the datasets
is mainly due to the significantly higher number of
relations in the FB15K-237 dataset (237 v.s. 11).
We provide further details on the buckets in App. C.

5.2 Bucketized Comparison of Models

To get an overview of the fine-grained evaluation of
the KGC models, we used the predictions from Py-
KEEN on the FB15K-237 and WN18RR datasets.
By ranking different systems with the MRR met-
ric in two ways: (1) based on their overall perfor-
mance; and (2) based on bucket-wise performance;

Overall rank b= b ̸=

TuckER 1 / 1 .601 / .543 .399 / .457
ConvE 2 / 3 .301 / .486 .699 / .514
RotatE 3 / 5 .257 / .686 .743 / .314
Rescal 4 / 2 .261 / .457 .739 / .543

DistMult 5 / 4 .541 / .400 .459 / .600
TransE 6 / 6 .868 / .800 .132 / .200

Table 1: Ranking of KGC models (trained with Py-
KEEN) according to the MRR score. 1 indicates best
rank. b=/b̸=: the fraction of buckets where the ranking
of a given model is equivalent/not equivalent compared
to the overall rank of the model. Results are on the
datasets FB15K-237 / WN18RR.

we obtain that, as shown in Table 1, the overall rank-
ing of the models is significantly different than the
ranking of the models for each individual bucket.

For example, TuckER is ranked as the best-
performing model on both FB15K-237 and
WN18RR. However, TuckER is not ranked as best
performing model for approximately 40% and 46%
of the buckets for FB15K-237 and WN18RR re-
spectively. For instance, when taking a closer look
at FB15K-237, we find that for the bucket featur-
ized by symmetric relations, TuckER is ranked 2nd
and Rescal is ranked 1st (on the overall test set,
Rescal is ranked 4th) and for the One-to-one re-
lations, TuckER is also ranked 2nd and DistMult
is ranked 1st (on the overall test set, DistMult is
ranked 5th); see Figure 1.

Such findings would be impossible to spot with
standard averaged metrics over the entire test set,
and are similar in spirit to previous results that show
how alternative evaluation methods can expose
differences in overall model performance (Wang
et al., 2019; Rim et al., 2021). With KGxBoard,
researchers can diagnose issues with any KGC
model on customized properties of the data (i.e.,
customized bucketizations of the evaluation data).

5.3 Bucketized Comparison of Models
Trained with Different Hyperparameters

Similarly as with the fine-grained comparison be-
tween diffferent models (Sec. 5.2), KGxBoard can
be used to compare one model that was trained on
multiple sets of different hyperparameters (HPs)
and implementations. For this purpose, we train
each of the four KGC models (ConvE, Rescal, Dist-
Mult and TransE) with two sets of HPs on two KGC
libraries—PyKEEN and LibKGE—and showcase
the differences. Note that the implementation from
different libraries can vary significantly w.r.t. the

HP search space and the degree of customization.6

On the one hand, we trained each model with the
hyperparameters that aim to reproduce the work of
the original papers (trained with PyKEEN; the HP
combination was proposed in PyKEEN’s documen-
tation). On the other hand, we used model configu-
rations resulting from a HP optimization pipeline
that ensures improved overall results (trained with
LibKGE; HP combination proposed by Ruffinelli
et al. (2020)). We refer to each of the former
models as ORIGHP-MODEL and to the latter as
OPTIMHP-MODEL. While the OPTIMHP mod-
els always outperform their ORIGHP counterparts,
we still observed many cases where the ranking of
the models flipped on some buckets. For example,
ORIGHP-CONVE performs better than OPTIMHP-
CONVE for: (1) the FB15K-237 triples with rela-
tion between award ceremony and award winner;
(2) FB15K-237 triples whose tail entity types are
of type "musical work" (details in App. E).

5.4 Automatic Debugging of Models Using
Buckets

Hits@1 ConvE TuckER RotatE Rescal
Debugging test

Before debug. .0000 .0000 .0000 .0000
Naive .0625 .1875 .0465 .1642

In-danger .1562 .2083 .0465 .2015
Original test

Before debug. .2710 .3108 .2627 .2596
Naive .2416 .3010 .2627 .2594

In-danger .2574 .3004 .2627 .2594

Table 2: Debugging results for the relations with most
symmetry violations (Hits@1).

Grouping related properties of the model into
buckets offers not only the potential to diagnose
problems, but also the potential to fix them by de-
bugging. We show here how the debugging tech-
niques of Malon et al. (2022) may be adapted to
fix problems with KG embeddings, illustrating the
idea with one particular bucket: relation symmetry.

Updating the relation embedding to improve
symmetry for one relation will have no effect on
other relations generally, so we debug only one
relation r at a time. For debugging, we collect a
sub-bucket consisting of triples (h, r, t) that vio-
late symmetry in a stricter sense: the reverse triple
(t, r, h) is in the training set and the trained model

6For instance, while LibKGE allows the customized ini-
tialization of the embeddings through HPs, PyKEEN requires
changing the source code. More details in App. D.

predicts h as the tail for (t, r, ?) with rank one, but
t has rank greater than one among the predictions
for (h, r, ?). Ten triples from the sub-bucket con-
stitute the debugging set, which is used to learn
better model parameters, and the remaining triples
are held out to form the debugging test set.

We debug the relation with the most symme-
try violations (in the above sense) for four mod-
els: ConvE, TuckER, RotatE and Rescal.7 A naive
method, which we call intensive fine-tuning, simply
fine-tunes the model on the debugging set alone un-
til all its triples are predicted at rank one. We freeze
entity embeddings during intensive fine-tuning, be-
cause updating the entity embedding will not gen-
eralize to improve symmetry on any held-out en-
tities. To monitor whether this learning comes at
the expense of forgetting other triples, we evaluate
performance on the original test set before and after
debugging, in addition to the debugging test set.

We also adapt the proposed method of Malon
et al. (2022) to KGE. In this method, we first run the
intensive fine-tuning, then collect twenty triples at
random from the training set, which were correctly
predicted at rank one after the original rank-tuning,
but whose rank fell after the intensive fine-tuning.
We use these twenty examples together with the ten
debugging examples in a second round of intensive
fine-tuning, again starting with the parameters of
the original model. The hope is to learn the debug-
ging examples while anchoring the performance of
triples that are “in danger” of being forgotten.

Table 2 shows debugging results for the four
models. In all cases, naive debugging improves
Hits@1 on the held-out test debugging examples,
and in-danger debugging often yields a further im-
provement. The impact of debugging on Hits@1 of
the original test set is less than 1% for all models
except ConvE, which has interaction parameters
that are applied to many relations. For ConvE, the
in-danger method cuts this sacrifice in half. We
provide more detailed analysis in Appendix F.

6 Conclusions

We presented KGxBoard: interactive framework
for fine-grained and interpretable evaluation on
meaningful subsets of the data, each of which tests
individual and interpretable capabilities of a KGC
model. We highlighted insights that would be im-
possible to detect with standard leaderboards.

7The other two models, Distmult and TransE, did not have
enough symmetry violations to fill a debugging set.

References
Bilal Abu-Salih. 2021. Domain-specific Knowledge

Graphs: A Survey. Journal of Network and Com-
puter Applications, 185:103076.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-
rent Vermue, Sahand Sharifzadeh, Volker Tresp, and
Jens Lehmann. 2021. PyKEEN 1.0: A Python Li-
brary for Training and Evaluating Knowledge Graph
Embeddings. Journal of Machine Learning Research,
22(82):1–6.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
DBpedia: A Nucleus for a Web of Open Data. In The
semantic web, pages 722–735. Springer.

Ivana Balazevic, Carl Allen, and Timothy M.
Hospedales. 2019. TuckER: Tensor Factorization
for Knowledge Graph Completion. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processin (EMNLP), pages 5184–5193.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
Collaboratively Created Graph Database for Structur-
ing Human Knowledge. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data (SIGMOD).

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating Embeddings for Modeling Multi-
Relational Data. Advances in Neural Information
Processing Systems (NeurIPS).

Samuel R. Bowman and George E. Dahl. 2021. What
Will it Take to Fix Benchmarking in Natural Lan-
guage Understanding? In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), page 4843–4855.

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek,
Patrick Betz, and Rainer Gemulla. 2020. LibKGE-A
Knowledge Graph Embedding Library for Repro-
ducible Research. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations (EMNLP), pages 165–
174.

Payal Chandak, Kexin Huang, and Marinka Zitnik. 2022.
Building a Knowledge Graph to Enable Precision
Medicine. bioRxiv.

Dawei Cheng, Fangzhou Yang, Xiaoyang Wang, Ying
Zhang, and Liqing Zhang. 2020. Knowledge Graph-
based Event Embedding Framework for Financial
Quantitative Investments. In Proceedings of the In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages
2221–2230.

Louis Clouatre, Philippe Trempe, Amal Zouaq, and
Sarath Chandar. 2021. MLMLM: Link Prediction

with Mean Likelihood Masked Language Model. In
Proceedings of the Annual Meeting on Association
for Computational Linguistics (ACL), pages 4321–
4331.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2D
Knowledge Graph Embeddings. In Proceedings
of the AAAI Conference on Artificial Intelligence
(AAAI), pages 1811–1818.

Bradley Efron. 1992. Bootstrap Methods: Another
Look at the Jackknife. In Breakthroughs in Statistics,
pages 569–593. Springer.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is
in the Eye of the User: A Critique of NLP Leader-
boards. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 4846–4853.

Niklas Friedrich, Kiril Gashteovski, Mingying Yu,
Bhushan Kotnis, Caroline Lawrence, Mathias
Niepert, and Goran Glavas̆. 2022. AnnIE: An An-
notation Platform for Constructing Complete Open
Information Extraction Benchmark. In Proceedings
of the Annual Meeting on Association for Compu-
tational Linguistics (ACL): System Demonstrations,
page 44–60.

Aldo Gangemi, Andrea Giovanni Nuzzolese, Valentina
Presutti, Francesco Draicchio, Alberto Musetti, and
Paolo Ciancarini. 2012. Automatic Typing of DB-
pedia Entities. In Proceedings of the International
Semantc Web Conference (ISWC), pages 65–81.

Kiril Gashteovski, Mingying Yu, Bhushan Kotnis, Car-
olin Lawrence, Mathias Niepert, and Goran Glavas̆.
2022. BenchIE: A Framework for Multi-Faceted
Fact-Based Open Information Extraction Evaluation.
In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
4472–4490.

Filip Ilievski, Daniel Garijo, Hans Chalupsky,
Naren Teja Divvala, Yixiang Yao, Craig Rogers,
Rongpeng Li, Jun Liu, Amandeep Singh, Daniel
Schwabe, et al. 2020. KGTK: A Toolkit for Large
Knowledge Graph Manipulation and Analysis. In In-
ternational Semantic Web Conference (ISWC), pages
278–293. Springer.

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst.
2017. Knowledge Base Completion: Baselines Strike
Back. In Proceedings the Workshop on Represen-
tation Learning for NLP (Rep4NLP@ACL), page
69–74.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit
Bansal, Christopher Potts, and Adina Williams. 2021.
Dynabench: Rethinking Benchmarking in NLP. In

https://www.sciencedirect.com/science/article/abs/pii/S1084804521000990
https://www.sciencedirect.com/science/article/abs/pii/S1084804521000990
https://jmlr.org/papers/v22/20-825.html
https://jmlr.org/papers/v22/20-825.html
https://jmlr.org/papers/v22/20-825.html
https://link.springer.com/chapter/10.1007/978-3-540-76298-0_52
https://aclanthology.org/D19-1522/
https://aclanthology.org/D19-1522/
https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/10.1145/1376616.1376746
https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://aclanthology.org/2021.naacl-main.385/
https://aclanthology.org/2021.naacl-main.385/
https://aclanthology.org/2021.naacl-main.385/
https://aclanthology.org/2020.emnlp-demos.22/
https://aclanthology.org/2020.emnlp-demos.22/
https://aclanthology.org/2020.emnlp-demos.22/
https://www.biorxiv.org/content/10.1101/2022.05.01.489928v1
https://www.biorxiv.org/content/10.1101/2022.05.01.489928v1
https://dl.acm.org/doi/abs/10.1145/3397271.3401427
https://dl.acm.org/doi/abs/10.1145/3397271.3401427
https://dl.acm.org/doi/abs/10.1145/3397271.3401427
https://aclanthology.org/2021.findings-acl.378/
https://aclanthology.org/2021.findings-acl.378/
https://ojs.aaai.org/index.php/AAAI/article/view/11573/11432
https://ojs.aaai.org/index.php/AAAI/article/view/11573/11432
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_41
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_41
https://aclanthology.org/2020.emnlp-main.393/
https://aclanthology.org/2020.emnlp-main.393/
https://aclanthology.org/2020.emnlp-main.393/
https://aclanthology.org/2022.acl-demo.5/
https://aclanthology.org/2022.acl-demo.5/
https://aclanthology.org/2022.acl-demo.5/
https://link.springer.com/chapter/10.1007/978-3-642-35176-1_5
https://link.springer.com/chapter/10.1007/978-3-642-35176-1_5
https://aclanthology.org/2022.acl-long.307/
https://aclanthology.org/2022.acl-long.307/
https://link.springer.com/chapter/10.1007/978-3-030-62466-8_18
https://link.springer.com/chapter/10.1007/978-3-030-62466-8_18
https://aclanthology.org/W17-2609/
https://aclanthology.org/W17-2609/
https://aclanthology.org/2021.naacl-main.324/

Proceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 4110–4124.

Bhushan Kotnis, Kiril Gashteovski, Daniel Rubio, Am-
mar Shaker, Vanesa Rodriguez-Tembras, Makoto
Takamoto, Mathias Niepert, and Carolin Lawrence.
2022. MILIE: Modular & Iterative Multilingual
Open Information Extraction. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 6939–6950.

Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Hung Ngo
Quoc, Tuan Tran Nhat, and Manfred Hauswirth. 2016.
The Graph of Things: A Step Towards the Live
Knowledge Graph of Connected Things. Journal
of Web Semantics, 37:25–35.

Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan,
Shuaicheng Chang, Junqi Dai, Yixin Liu, Zihuiwen
Ye, and Graham Neubig. 2021. ExplainaBoard: An
Explainable Leaderboard for NLP. In Proceedings
of the Annual Meeting on Association for Compu-
tational Linguistics (ACL): System Demonstrations,
pages 280—-289.

Robert IV L. Logan, Nelson F. Liu, Matthew E. Peters,
Matt Gardner, and Sameer Singh. 2019. Barack’s
Wife Hillary: Using Knowledge Graphs for Fact-
Aware Language Modeling. In Proceesings of the
Annual Meeting on Association for Computational
Linguistics (ACL), page 5962–5971.

Christopher Malon, Kai Li, and Erik Kruus. 2022. Fast
few-shot debugging for NLU test suites. In Proceed-
ings of Deep Learning Inside Out (DeeLIO 2022):
The 3rd Workshop on Knowledge Extraction and In-
tegration for Deep Learning Architectures, pages 79–
86. Association for Computational Linguistics.

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel
Ruffinelli, Rainer Gemulla, and Heiner Stucken-
schmidt. 2018. Fine-grained Evaluation of Rule-and
Embedding-Based Systems for Knowledge Graph
Completion. In Proceedings of the International Se-
mantic Web Conference (ISWC), pages 3–20.

George A. Miller. 1992. WordNet: A Lexical Database
for English. Communications of the ACM, 38:39–41.

Pasquale Minervini, Claudia d’Amato, Nicola Fanizzi,
and Floriana Esposito. 2015. Efficient learning of
entity and predicate embeddings for link prediction
in knowledge graphs. In Proceedings of the Inter-
national Workshop on Uncertainty Reasoning for
the Semantic Web (URSW@ISWC), volume 1479 of
CEUR Workshop Proceedings, pages 26–37.

Aisha Mohamed, Shameem Parambath, Zoi Kaoudi,
and Ashraf Aboulnaga. 2020. Popularity Agnostic
Evaluation of Knowledge Graph Embeddings. In
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 1059–1068.

Shinichi Nakagawa and Innes C Cuthill. 2007. Effect
size, confidence interval and statistical significance:
A practical guide for biologists. Biological reviews,
82(4):591–605.

Avanika Narayan, Piero Molino, Karan Goel, Willie
Neiswanger, and Christopher Re. 2021. Personal-
ized Benchmarking with the Ludwig Benchmarking
Toolkit. In Proceedings of the Conference on Neural
Information Processing Systems (NeurIPS).

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A Three-Way Model for Collective
Learning on Multi-Relational Data. In Proceedings
of the International Conference on Machine Learning
(ICML), pages 809–816.

Matteo Palmonari and Pasquale Minervini. 2020.
Knowledge Graph Embeddings and Explainable AI.
Knowledge Graphs for Explainable Artificial Intel-
ligence: Foundations, Applications and Challenges,
47:49.

Yanhui Peng and Jing Zhang. 2020. LineaRE: Simple
but Powerful Knowledge Graph Embedding for Link
Prediction. In IEEE International Conference on
Data Mining (ICDM), pages 422–431. IEEE.

Priya Radhakrishnan, Partha Talukdar, and Vasudeva
Varma. 2018. ELDEN: Improved Entity Linking Us-
ing Densified Knowledge Graphs. In Proceedings
of the Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
1844–1853.

Thomas Rebele, Fabian Suchanek, Johannes Hoffart,
Joanna Biega, Erdal Kuzey, and Gerhard Weikum.
2016. YAGO: A Multilingual Knowledge Base from
Wikipedia, WordNet, and GeoNames. In Proceed-
ings of the International Semantic Web Conference
(ISWC), pages 177–185. Springer.

Marco Tulio Ribeiro, Tongshuang Sherry Wu, Carlos
Guestrin, and Sameer Singh. 2020. Beyond Accu-
racy: Behavioral Testing of NLP Models with Check-
List. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL), page
4902–4912.

Wiem Ben Rim, Carolin Lawrence, Kiril Gashteovski,
Mathias Niepert, and Naoaki Okazaki. 2021. Be-
havioral Testing of Knowledge Graph Embedding
Models for Link Prediction. In Proceedings of the
Conference on Automated Knowledge Base Construc-
tion (AKBC).

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You CAN Teach an Old Dog New
Tricks! On Training Knowledge Graph Embeddings.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Tara Safavi and Danai Koutra. 2020. CoDEx: A Com-
prehensive Knowledge Graph Completion Bench-
mark. In Proceedings of the 2020 Conference on

https://aclanthology.org/2022.acl-long.478/
https://aclanthology.org/2022.acl-long.478/
https://www.sciencedirect.com/science/article/abs/pii/S1570826816000196
https://www.sciencedirect.com/science/article/abs/pii/S1570826816000196
https://aclanthology.org/2021.acl-demo.34/
https://aclanthology.org/2021.acl-demo.34/
https://aclanthology.org/P19-1598/
https://aclanthology.org/P19-1598/
https://aclanthology.org/P19-1598/
https://doi.org/10.18653/v1/2022.deelio-1.8
https://doi.org/10.18653/v1/2022.deelio-1.8
https://www.uni-mannheim.de/media/Einrichtungen/dws/Files_People/Profs/rgemulla/publications/meilicke18ruleemb.pdf
https://www.uni-mannheim.de/media/Einrichtungen/dws/Files_People/Profs/rgemulla/publications/meilicke18ruleemb.pdf
https://www.uni-mannheim.de/media/Einrichtungen/dws/Files_People/Profs/rgemulla/publications/meilicke18ruleemb.pdf
https://dl.acm.org/doi/10.1145/219717.219748
https://dl.acm.org/doi/10.1145/219717.219748
http://ceur-ws.org/Vol-1479/paper3.pdf
http://ceur-ws.org/Vol-1479/paper3.pdf
http://ceur-ws.org/Vol-1479/paper3.pdf
https://proceedings.mlr.press/v124/mohamed20a.html
https://proceedings.mlr.press/v124/mohamed20a.html
https://pubmed.ncbi.nlm.nih.gov/17944619/
https://pubmed.ncbi.nlm.nih.gov/17944619/
https://pubmed.ncbi.nlm.nih.gov/17944619/
https://openreview.net/pdf?id=hwjnu6qW7E4
https://openreview.net/pdf?id=hwjnu6qW7E4
https://openreview.net/pdf?id=hwjnu6qW7E4
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://arxiv.org/abs/2004.14843
https://arxiv.org/abs/2004.10037
https://arxiv.org/abs/2004.10037
https://arxiv.org/abs/2004.10037
https://aclanthology.org/N18-1167/
https://aclanthology.org/N18-1167/
https://people.mpi-inf.mpg.de/~jbiega/papers/yago_iswc2016.pdf
https://people.mpi-inf.mpg.de/~jbiega/papers/yago_iswc2016.pdf
https://aclanthology.org/2020.acl-main.442/
https://aclanthology.org/2020.acl-main.442/
https://aclanthology.org/2020.acl-main.442/
https://openreview.net/forum?id=3_2B2MliB8V
https://openreview.net/forum?id=3_2B2MliB8V
https://openreview.net/forum?id=3_2B2MliB8V
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
https://aclanthology.org/2020.emnlp-main.669/
https://aclanthology.org/2020.emnlp-main.669/
https://aclanthology.org/2020.emnlp-main.669/

Empirical Methods in Natural Language Processing
(EMNLP), page 8328–8350.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-Sequence Knowledge Graph
Completion and Question Answering. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics (ACL), page 2814–2828.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. RotatE: Knowledge Graph Embedding
by Relational Rotation in Complex Space. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR).

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha
Talukdar, and Yiming Yang. 2020. A Re-evaluation
of Knowledge Graph Completion Methods. In Pro-
ceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), page 5516–5522.

Tristan Thrush, K. N. Bharadwaj Tirumala, An-
mol Gupta, Max Bartolo, Pedro Rodriguez, Tariq
Kane, William Gaviria Rojas, Peter Mattson, Adina
Williams, and Douwe Kiela. 2022. Dynatask: A
Framework for Creating Dynamic AI Benchmark
Tasks. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL):
System Demonstrations, pages 174–181.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus Latent Features for Knowledge Base and Text
Inference. In Proceedings of the Workshop on Con-
tinuous Vector Space Models and their Composition-
ality@ACL, pages 57–66.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
Embeddings for Simple Link Prediction. In Pro-
ceedings of the International Conference on Machine
Learning (ICML), pages 2071–2080.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla,
Samuel Broscheit, and Christian Meilicke. 2019. On
Evaluating Embedding Models for Knowledge Base
Completion. In Proceedings of the Workshop on Rep-
resentation Learning for NLP (RepL4NLP@ACL),
page 104–112.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge Graph Embedding by Trans-
lating on Hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages
1112–1119.

Gerhard Weikum, Xin Luna Dong, Simon Razniewski,
Fabian Suchanek, et al. 2021. Machine Knowledge:
Creation and Curation of Comprehensive Knowledge
Bases. Foundations and Trends® in Databases, 10(2-
4):108–490.

Yang Xiao, Jinlan Fu, Weizhe Yuan, Vijay Viswanathan,
Zhoumianze Liu, Yixin Liu, Graham Neubig, and
Pengfei Liu. 2022. DataLab: A Platform for Data
Analysis and Intervention. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (ACL): System Demonstrations,
page 182–195.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding Entities and Rela-
tions for Learning and Inference in Knowledge Bases.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie
Wang. 2020. Learning Hierarchy-aware Knowledge
Graph Embeddings for Link Prediction. In Proceed-
ings of the AAAI Conference on Artificial Intelligence
(AAAI), pages 3065–3072.

https://aclanthology.org/2022.acl-long.201/
https://aclanthology.org/2022.acl-long.201/
https://arxiv.org/abs/1902.10197
https://arxiv.org/abs/1902.10197
https://aclanthology.org/2020.acl-main.489/
https://aclanthology.org/2020.acl-main.489/
https://aclanthology.org/2022.acl-demo.17/
https://aclanthology.org/2022.acl-demo.17/
https://aclanthology.org/2022.acl-demo.17/
https://aclanthology.org/W15-4007/
https://aclanthology.org/W15-4007/
https://aclanthology.org/W15-4007/
http://proceedings.mlr.press/v48/trouillon16.pdf
http://proceedings.mlr.press/v48/trouillon16.pdf
https://dl.acm.org/doi/10.1145/2629489
https://dl.acm.org/doi/10.1145/2629489
https://aclanthology.org/W19-4313/
https://aclanthology.org/W19-4313/
https://aclanthology.org/W19-4313/
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ieeexplore.ieee.org/document/9483802
https://ieeexplore.ieee.org/document/9483802
https://ieeexplore.ieee.org/document/9483802
https://aclanthology.org/2022.acl-demo.18/
https://aclanthology.org/2022.acl-demo.18/
https://arxiv.org/abs/1412.6575
https://arxiv.org/abs/1412.6575
https://ojs.aaai.org/index.php/AAAI/article/view/5701
https://ojs.aaai.org/index.php/AAAI/article/view/5701

Appendix

A Discussion on Related Work

A.1 Evaluation of NLP Models

Recent work in NLP has pointed to the problems
of using single-score metrics (Ethayarajh and Juraf-
sky, 2020; Narayan et al., 2021; Bowman and Dahl,
2021). In particular, such single-score metric evalu-
ations do not expose the data-centric properties that
were not learned by the models (e.g., problems with
learning named entities that span across multiple to-
kens). In NLP, such issues are tackled by proposing
multifaceted and/or explainable leaderboards and
benchmarks (Liu et al., 2021; Gashteovski et al.,
2022; Friedrich et al., 2022; Kotnis et al., 2022;
Xiao et al., 2022; Kiela et al., 2021; Thrush et al.,
2022). To the best of our knowledge, there is no
prior work that proposes such multi-faceted leader-
boards for KG completion models.

A.2 Evaluation of KGC Models

KGC Benchmarks. Prior work has shown that
learning latent representations—i.e., KG Embed-
dings (KGEs)—for the entities and relations is
highly beneficial for tackling KGC tasks (Min-
ervini et al., 2015; Ruffinelli et al., 2020). Re-
searchers have evaluates the effects of hyperpa-
rameters (and different training strategies) of KGE
models for link prediction. In particular, Kadlec
et al. (2017) studied the effects of different train-
ing objectives on the DistMult model (Yang et al.,
2015) and found that using the cross entropy loss
function is a better alternative to the binary cross
entropy. Ruffinelli et al. (2020) performed a sys-
tematic study on many KGE models with the
LibKGE framework (Broscheit et al., 2020) and
found that training components make a huge dif-
ference in model performance. Safavi and Koutra
(2020) proposed a more data-centric benchmark
(CoDEx), which improves upon previous bench-
marks by proposing additional datasets extracted
from Wikidata (Vrandečić and Krötzsch, 2014) and
then using them to improve current KGE models.
Sun et al. (2020) proposed an evaluation frame-
work such that it breaks ties of same-score answers
according to different strategies. PyKEEN (Ali
et al., 2021) is another KGE framework and bench-
mark, which facilitates the training and evaluation
of KGE models for KG completion tasks across
a variety of datasets. Although highly useful for
overall evaluation, none of these frameworks pro-

vide fine-grained evaluation of KGE models, nor
an interactive interface for such evaluation.

Metrics. Other line of work focused on propos-
ing different metrics for exposing different prob-
lems within the KGE models (Wang et al., 2019),
though these metric are averaged scores over the
entire test set and do not provide additional insights
about where the models make mistakes. Prior work
has shown that the standard averaged evaluation
metrics hits@k and MRR favor popular entities
and relations (Mohamed et al., 2020). Contrary to
such approaches, KGxBoard operates across the
standard metrics (hits@k, MRR and MR), but in
addition it supports highly customized fine-grained
analysis and interactive interface.

Studying Specific Properties. Other line of work
targets specific properties of the models, i.e., eval-
uating if a set of KGE models learned some spe-
cific properties. For example, relation symmetry
is a property that has been extensively studied in
the literature (Trouillon et al., 2016; Sun et al.,
2019; Peng and Zhang, 2020; Zhang et al., 2020;
Wang et al., 2014). Other line of work investigated
other properties, such as entity type hierarchy (Rim
et al., 2021; Zhang et al., 2020), (inverse) equiva-
lence (Meilicke et al., 2018), subsumption (Meil-
icke et al., 2018), relation and entity frequency (Mo-
hamed et al., 2020) and entity distribution (Bordes
et al., 2013).

KG Analyzers. Recently, there were proposals
for systems that analyse already constructed KGs
(Ilievski et al., 2020). Such work, however, does
not cover the evaluation of KGC models, it only
covers analysis of already existing KGs.

B Details on Built-in Features

KGxBoard comes with built-in features that buck-
etize the data automatically. Some of the built-in
features in KGxBoard are dataset-specific, while
others are dataset-agnostic.

• Length of head/tail entity: the number of tokens
in the head/tail entity (dataset-agnostic).

• Frequency of head/tail entity: the frequency of
tail entity in the training set (dataset-agnostic).

• Frequency of the predicate: the frequency of the
predicate in the training set (dataset-agnostic).

• Symmetry of relation: the symmetry of entity
relations (dataset-specific; for now KGxBoard
supports FB15K-237).

• Entity type level: the most specific (highest) en-
tity type level of true tail entity (dataset-specific,
for now we support FB15K-237). In particu-
lar, we mapped each Freebase entity to its DB-
pedia (Auer et al., 2007) counterpart, and then
used DBpedia’s type information (Gangemi et al.,
2012) in order to determine the most specific
type level that is available in the data; e.g., if we
have information (Barack Obama; type; Person)
and (Barack Obama; type; Politician), we use
the latter because it is more specific.

C Details on Customized Buckets

To provide more fine-grained analysis that goes
beyond the built-in features for bucketization, as
well as to showcase the ability of KGxBoard to han-
dle customized buckets, we partition the test data
into buckets, based on the following customized
features:

Buckets by relations. Each data point is placed
in a bucket according to its relation. For example,
the triples (England; /location/location/contains;
Lancaster) and (Los Angeles; /location/location/-
contains; Beverly Hills) are placed in the same
bucket because they have the same relation. This
bucketization is dataset-agnostic and we used it for
both FB15K-237 and WN18RR.

Buckets by relation types 1-1, 1-M, M-1 or M-
M. Following Bordes et al. (2013), we partition
the data into four possible buckets according to
their relation properties: 1-to-1 (1-1), 1-to-many
(1-M), many-to-1 (M-1) and many-to-many (M-M).
According to this definition, each relation has a
property on how many entities it can have as a head
or tail. For example, the relation isAuthorOfBook is
1-M relation (because one author can be the author
of several books) and the relation sportsTeamLoca-
tion is 1-1 relation (because one sports team can
have only one home location).

Tail entity type (level 1). The entity type (level 1,
as described by Rim et al. (2021)) of the gold entity
that needs to be predicted. This customized feature
is specific for FB15K-237 and not for WN18RR.
In particular, we leverage similar approach as with
the built-in entity type level feature (described in
Appendix B): we mapped each Freebase entity to
its DBpeda counter part and then used DBpedia’s
type information to determine the type at level 1 of
the entity type hierarchy.

Tail entity type (level 2). The entity type (level
2, as described by Rim et al. (2021)) of the gold
entity that needs to be predicted. As with the previ-
ous customized feature, this customized feature is
specific for FB15K-237 and not for WN18RR.

Relation’s symmetry (for WN18RR). In Ap-
pendix B, we described KGxBoard’s built-in fea-
ture that bucketizes the data into symmetric and
asymmetric relations for the FB15K-237 dataset.
This feature, however, is not natively supported
by KGxBoard for the WN18RR dataset. For
WN18RR, we followed Rim et al. (2021) and (1)
got a set of all unique relations from WN18RR;
(2) manually defined which relation is symmetric
and which one is not. Then, we assigned a bucket
(symmetric or asymmetric) to each data point in
the test set.

D Training Details for PyKEEN and
LibKGE

PyKEEN provides hyperparameters to reproduce
the results of the original work of a given
model, which we used to train RotatE, ConvE,
TuckER, TransE and Rescal on both WN18RR and
FB15K237 datasets. After training TransE, the hy-
perparameters for WN18RR returned a very low
MRR result indicating that it failed to train for the
task, and for DistMult, no configuration files cor-
responding to the above-mentioned datasets were
provided. In such cases, we used insights from
LibKGE (Ruffinelli et al., 2020) to train the models
with PyKEEN to the best of our abilities; to im-
plement the same models in the two frameworks,
we match some parameters such as the number of
epochs, embedding dimensions, initializer function,
optimizer and learning rate arguments, including
the scheduler and its parameters. However, the hy-
perparameters of a KGE model on the mentioned
frameworks are not matched one-to-one. LibKGE
allows the user to set both the initializer of the re-
lation and entity embeddings along with setting
the lookup embedder weight, patience, regularizer,
dropout. In contrast, PyKEEN only allows the
naming of the initializer function. Moreover, while
negative sampling is possible in both frameworks,
PyKEEN allows setting the negative sampler func-
tion that describes how to generate corrupt triples
for training and allows the setting of negatives per
positive triples as well as the filtering and corrup-
tion scheme, where LibKGE allows the previous
as well as adding the number of samples for each

head, relation, object. We expect that these differ-
ences in implementation and hyperparameters will
have an impact on the results seen on KGcBoard.
We provide the used hyperparameters and trained
models with our code.

It is worth noting that PyKEEN does provide
configurations for the same models with optimized
parameters, but since the MRR and Hits@k results
of these models are outperformed by the LibKGE
models, we chose to make this comparison to both
feature the difference in hyperparameters as well as
the framework implementation in our experiments.
For the models trained on LibKGE, we used the pre-
trained models obtained by Ruffinelli et al. (2020)
as a result of hyperparameter optimization using
LibKGE (Broscheit et al., 2020).

E Detailed Results for Bucketized
Comparison of Models

In these experiments, we showcase how the users
can use KGxBoard in order to compare one model
trained on multiple hyperparameter settings. As ex-
plained in Section 5.3, on the one hand, we trained
each model with the hyperparameters that aim to
reproduce the work of the original papers (dubbed
ORIGHP-MODEL); on the other hand we used
pretrained models that use a hyperparameter op-
timization pipeline that ensures improved overall
results (dubbed OPTIMHP-MODEL). Each model
trained with the ORIGHP hyperparameter settings
was trained with PyKEEN, by using the hyperpa-
rameters combination that aims to reproduce the
results from the original papers and was proposed
in PyKEEN’s documentation. Each model trained
with the OPTIMHP hyperparameter settings was
trained with with LibKGE, by using the hyperpa-
rameter combination proposed by Ruffinelli et al.
(2020). The results are summarized in Table 3.

While the OPTIMHP models always outperform
their ORIGHP counterparts in both FB15K-237
and WN18RR datasets, we still observed many
cases where the ranking of the models flipped on
some buckets. For example, OPTIMHP-CONVE
on FB15K-237 performs better than ORIGHP-
CONVE on the overall score, as well as on 88% of
all the buckets. However, ORIGHP-CONVE per-
forms better than OPTIMHP-CONVE for several
buckets, including (1) the FB15K-237 triples with
relation between award ceremony and award win-
ner; (2) FB15K-237 triples whose tail entity types
are of type "musical work". In a more extreme case

Model Overall rank MRR score b= b ̸=

(OPTIMHP / ORIGHP)

FB15K-237
ConvE 1 / 2 0.44 / 0.39 0.88 0.12
Rescal 1 / 2 0.45 / 0.38 0.83 0.17

DistMult 1 / 2 0.44 / 0.31 0.91 0.09
TransE 1 / 2 0.42 / 0.19 0.98 0.02

WN18RR
ConvE 1 / 2 0.46 / 0.28 1.00 0.00
Rescal 1 / 2 0.48 / 0.29 1.00 0.00

DistMult 1 / 2 0.48 / 0.27 1.00 0.00
TransE 1 / 2 0.24 / 0.13 0.91 0.09

Table 3: Comparison of KGC models trained with dif-
ferent hyperparameter settings. The shown results com-
pare each model between its OPTIMHP and ORIGHP
hyperparameter settings. The models trained with OP-
TIMHP are trained with hyperparameter optimization
pipeline that ensures improved overall results. The
models trained with ORIGHP use hyperparamter set-
tings that aim to replicate the results from the orig-
inal papers. 1 in Overall rank indicates better rank.
The models were trained and tested on the FB15K-237
and WN18RR datasets. b=/b̸= indicates the fraction of
buckets where the overall rank is equivalent/not equiva-
lent as the bucket’s rank.

for FB15K-237, when we compared OPTIMHP-
TRANSE with ORIGHP-TRANSE, the optimized
OPTIMHP-TRANSE is ranked as 1st on the over-
all score and in 98% of the buckets (this is to be
expected, given that the difference in the overall
score is 23 percentage points). Yet, in 2% of the
buckets (4 buckets in total), ORIGHP-TRANSE is
ranked as 1st.

F Detailed Results for Debugging

Table 4 shows debugging results for ConvE, Tucker,
RotatE, and Rescal. In all cases, naive debugging
improves Hits@1 on the held-out test debugging
examples, and in-danger debugging often yields a
further improvement. In cases where debugging
Hits@5 and Hits@10 were high to begin with, de-
bugging sometimes worsens these metrics, because
most of the debugging examples will be teaching
the model to swap the order of examples already
in the top 5 or 10, rather than bring something new
into the top 5 or 10 hits.

Only on ConvE does the naive method reduce
original Hits@1 by more than 1%. This impact
is possible because ConvE (and Tucker) have in-
teraction parameters that can affect other relations,
where RotatE and Rescal have only relation and en-
tity embeddings, so that the debugging affects only

Model / relation Hits@1 Hits@5 Hits@10 MR MRR
ConvE/dated

Debugging test
Before debugging .0000 .9062 1.0000 3.3125 .3556
Naive .0625 .3125 .5312 11.7188 .1863
In-danger .1562 .7812 .9688 3.9688 .3943

Original test
Before debugging .2710 .4734 .5690 186.0528 .3677
Naive .2416 .4464 .5433 237.9980 .3402
In-danger .2574 .4614 .5595 203.3516 .3546
Tucker/adjoins

Debugging test
Before debugging .0000 .8542 .9583 3.7708 .3895
Naive .1875 .8542 .9167 5.0208 .4749
In-danger .2083 .8333 .9167 6.7917 .4678

Original test
Before debugging .3108 .5396 .6283 106.4038 .4171
Naive .3010 .5262 .6162 126.6328 .4055
In-danger .3004 .5232 .6140 119.0497 .4041
RotatE/friendship

Debugging test
Before debugging .0000 .0000 .0000 41.0465 .0419
Naive .0465 .1860 .4302 18.9651 .1493
In-danger .0465 .1860 .4535 21.2791 .1468

Original test
Before debugging .2627 .4605 .5432 346.0619 .3554
Naive .2627 .4605 .5432 345.7814 .3554
In-danger .2627 .4605 .5432 345.8078 .3554
Rescal/adjoins

Debugging test
Before debugging .0000 .7761 .9030 5.5597 .3385
Naive .1642 .7313 .8507 9.2687 .4038
In-danger .2015 .6716 .8060 9.1194 .4040

Original test
Before debugging .2596 .4665 .5562 295.5532 .3574
Naive .2594 .4665 .5560 295.6199 .3573
In-danger .2594 .4665 .5560 295.7509 .3573

Table 4: Debugging results for the relations with most symmetry violations.

the relation being debugged. On ConvE, the in-
danger method reduces original Hits@1, 5, and 10
by about half as much as the naive method, while
significantly improving all metrics on the debug-
ging set. For the other models, the naive method
can achieve simple and effective debugging.

