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ABSTRACT

Several recent studies investigate TCR-peptide/-pMHC binding prediction using machine or
deep learning approaches. Many of these methods achieve impressive results on test sets which
include peptide sequences that are also included in the training set. In this work, we investigate
how state-of-the-art deep learning models for TCR-peptide/-pMHC binding prediction generalize
to unseen peptides. We create a dataset called TChard, which include positive samples from IEDB,
VDJdb, McPAS-TCR and the MIRA set, as well as negative samples from both randomization
and 10X Genomics assays. We propose the hard split, a simple heuristic for training/test split,
which ensures that test samples exclusively present peptides that do not belong to the training
set. We investigate the effect of different training/test splitting techniques on the models’ test
performance, as well as the effect of training and testing the models using mismatched negative
samples generated randomly, in addition to the negative samples derived from assays. Our results
show that modern deep learning methods fail to generalize to unseen peptides. We provide an
explanation why this happens and verify our hypothesis on the TChard dataset. We then conclude
that robust prediction of TCR recognition is still far for being solved.
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1 INTRODUCTION

Studying T cell receptors (TCRs) has become an integral part of cancer immunotherapy and human
infectious disease research (1, 2, 3, 4). TCRs are able to identify intra-cellular processed peptides originating
from infected or aberrant cells. TCRs are heterodimers consisting of an α- and a β-chain, which bind
to peptides presented on the cell surface by either major histocompatibility complex (MHC) class I or
class II molecules, depending on the cell type (5, 6, 7). The binding of the TCR to the peptide-MHC
(pMHC) complex occurs at the complementarity-determining region 3 (CDR3). The CDR3α consists of
alleles from the V and J genes; for the CDR3β, the D gene is additionally involved (8, 9). These alleles
can be recombined unboundedly, which results in a high TCR repertoire diversity, essential for a broad
T cell-based immune response (10). When a naive TCR is exposed to an antigen and activated for the
first time, a memory T cell population with this TCR may develop, which enables a long-lasting immune
response (11, 12).
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Numerous recent studies investigate TCR-peptide/-pMHC binding prediction by applying different
machine or deep learning methods (13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24). Many of these studies
use data from the Immune Epitope Database (IEDB) (25), VDJdb (26) and McPAS-TCR (27), which
mainly contain CDR3β data and lack information on CDR3α. Such methods achieve high test performance
when evaluated on test sets that belong to the same source as the training set. However, we show that
these methods exhibit weak cross-dataset generalization, i.e., the models suffer from severe performance
degradation when tested on a different dataset. For example, as shown in Figure S1, several machine
learning models trained on McPAS-TCR perform poorly on VDJdb.

In this work, in order to evaluate the relevance of the available data for deep-learning-based TCR-peptide/-
pMHC binding prediction, we aggregate binding samples obtained from IEDB, VDJdb and McPAS-TCR.
We additionally consider a set of binding samples from (28); we refer to it as MIRA set. Non-binding data
points are collected from IEDB, as well as from the 10X Genomics samples provided in the NetTCR-2.0
repository (22). A simple analysis of the class distribution (binding versus non-binding) of the resulting
data points reveals that all TCR sequences exclusively appear in either binding or non-binding TCR-
peptide/-pMHC pairs; no CDR3 sequence is observed in both positive and negative samples (see Figure
1C). Machine learning models trained naively on data with this class distribution are prone to learning
undesirable inductive biases. In fact, our results in Section 4.1 suggests they tend to classify samples only
as a function of the CDR3 sequences, which could be memorized.

For unbiased evaluation, we propose a new integrated dataset, which we name TChard. This dataset
consists in the integration of the aforementioned samples. Additionally, to reduce the bias associated with
CDR3 sequence memorization, we randomly recombine the TCRs and pMHCs of the available samples
and create randomized mismatched negative samples, as described in Section The TChard dataset. To the
best of our knowledge, this dataset constitutes the largest set of TCR-peptide/-pMHC samples available at
the time this work is being written.

We perform deep learning experiments using two state-of-the-art models for TCR-peptide/-pMHC
interaction prediction: ERGO II (23) and NetTCR-2.0 (22). ERGO II is a deep learning approach which
adopts long short-term memory (LSTM) networks and autoencoders to compute representations of peptides
and CDR3s. It can also handle additional input modalities, i.e., V and J genes, MHC and T cell type.
NetTCR-2.0 employs a simple 1D CNN-based model, integrating peptide and CDR3 sequence information
for the prediction of TCR-peptide specificity. Both models input peptide and CDR3s representations in the
form of amino acid sequences.

We perform experiments on TChard and investigate the effect of different training/test splitting strategies.
In contrast to previous works (23, 22), we place special emphasis on testing the models on unseen peptides.
We propose the hard split, a splitting heuristic meant to create test sets which only contain unseen peptides,
i.e. not included in the training set. In the context of neoantigen-based cancer vaccines development,
neoepitopes exhibit enormous variability in their amino acids sequences; employing predictive models
for TCR recognition in the development of neoantigen cancer vaccines requires robust generalization
on unseen peptides. We show that evaluating the models’ performance on unseen peptides leads to poor
generalization.

2 THE TCHARD DATASET

In this section, we describe the creation of the TChard dataset. All samples in TChard include a peptide
and a CDR3β sequence, associated with a binary binding label. A subset of these samples may additionally
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have: (i) CDR3α sequence information, and/or (ii) allele information of the MHC (class I or II) in complex
with peptides. A sample consists therefore of a tuple of molecules (from 2 to 4). When available, the V and
J alleles for the α-chain and the V, D, J alleles for the β-chain are also included. We refer to the binding
tuples as positive and to the non-binding ones as negative.

2.1 Dataset creation

First, we collect positive assays from the IEDB, VDJdb and McPAS-TCR databases. Additionally, we
include the binding samples from the MIRA set (28), which is publicly available in the NetTCR-2.0
repository 1.

Second, we include negative assays, i.e. non-binding tuples of molecules extracted from IEDB.
Additionally, a set of negative samples extracted from the NetTCR-2.0 repository is considered; this
is derived from 10X Genomics assays described by Montemurro et al. (22). In this work, we refer to the
negative tuples derived from negative assays as the NA set.

Third, in order to remove a small set of outliers, we operate a filtration over the length of the amino acid
sequences of peptides, CDR3α and CDR3β. We only keep samples with peptide sequence length smaller
than 16, CDR3α sequence length between 7 and 21 and CDR3β sequence length between 9 and 23. These
filtration steps are meant to exclude a small portion of data points which present consistently longer amino
acid sequences. Including them in the dataset would imply to extend the magnitude of the padding required
by NetTCR-2.0 by a large margin, making computation more expensive.

Fourth, we generate negative samples via random recombination of the sequences found in the positive
tuples. Building from the positive samples, we associate the peptides or pMHC complexes (when MHC
allele information is available) with CDR3α and CDR3β sequences randomly sampled from the dataset,
as operated in previous studies (23). We sample twice as many mismatched negative samples as there are
positive ones. We discard randomly generated samples which share at least the same (peptide, CDR3β)
with any positive sample. In this work, we refer to the randomized negative tuples as the RN set.

2.2 Description of the data distributions

The full dataset - i.e. considering negative samples from both NA and RN - presents:

• 528,020 unique (peptide, CDR3β) tuples, 385,776 of which are negative and 142,244 are positive;
• 400,397 unique (peptide, CDR3β,MHC) tuples, 300,168 of which are negative and 100,229 are

positive;
• 111,041 unique (peptide, CDR3β, CDR3α) tuples, 82,631 of which are negative and 28,410 are

positive;
• 110,266 unique (peptide, CDR3β, CDR3α,MHC) tuples, 82,037 of which are negative and 28,229

are positive.

The dataset statistics considering negative samples derived from either RN or NA are presented in Table S1.
Figure 1 depicts the class distribution for (peptide, CDR3β, CDR3α) samples. Analogously, Figure S2,
Figure S3 and Figure S4 depict the class distribution for (peptide, CDR3β), (peptide, CDR3β,MHC)
and (peptide, CDR3β, CDR3α,MHC) samples, respectively. Figure S5 depicts the length distribution
for all sequences.

1 https://github.com/mnielLab/NetTCR-2.0/tree/main/data
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3 PREDICTING TCR RECOGNITION WITH DEEP LEARNING

We perform experiments on the TChard dataset with two publicly available state-of-the-art deep learning
methods for TCR-peptide/-pMHC interaction prediction: ERGO II and NetTCR-2.0 2.

We operate TCR-peptide interaction prediction considering peptide and CDR3β, as well as TCR-pMHC
interaction prediction considering peptide, CDR3β, CDR3α and MHC. NetTCR-2.0 is not explicitly
designed to account for MHC information; we circumvent this shortcoming by concatenating the MHC
pseudo-sequence 3 to the other input amino acid sequences and perform BLOSUM50 encoding (30). We
do not make distinctions between class I and II MHCs and train a single model for both types.

3.1 Random and Hard Training/Test Splits

For performance evaluation, we investigate two different strategies for training/test splits.

Random split (RS). Given a training/test ratio (80/20 in this work), this procedure consists in sampling
test samples uniformly from the dataset without replacement until the desired budget is filled. The remaining
samples constitute the training set. In this work, we refer to RS(RN), when the negative tuples only belong
to the RN set, to RS(NA), when the negative tuples only belong to the NA set, and to RS(RN+NA), when
all negative samples are considered.

The nature of TCR recognition is combinatorial. In our dataset, although a given tuple of molecules is
only observed once, a given peptide can appear multiple times, paired with different CDR3β, CDR3α
or MHC. Using a random training/test split ensures that test tuples are not observed at training time.
However, this can lead to testing the model on peptides, MHCs, or CDR3β and CDR3α sequences that
were already observed at training time in combination with different sequences. Our result show that this
can lead to over-optimistic estimates of machine learning models’ real-world performance. To enable
neoantigen-based cancer vaccines and T-cell therapy, it is fundamental to test the model on sequences
which were never observed at training time. This allows to provide rigorous, unbiased estimates of the
model’s performance. Neoantigens display in fact enormous variability in their amino acids sequence; to
identify the most immunogenic vaccine elements, we need models that generalize to unseen sequences.

Hard split (HS). We propose a simple heuristic, which we refer to as hard split. Considering the whole
dataset consisting in a set of tuples, we first select a minimum training/test ratio (85/15 in this work). Let
Pl,u be the set of all peptides that are observed in at least l tuples but no more than u tuples in our dataset.
We randomly sample a peptide from Pl,u without replacement. All tuples which include that peptide are
assigned to the test set. If the current number of test samples is smaller than the budget defined by the
training/test ratio, the sampling from Pl,u is repeated.

This heuristic ensures that the peptides which belong to the test set are not observed by the model at
training time. For the (peptide, CDR3β) tuples, we set l and u to 500 and 10000, respectively. For the
(peptide, CDR3β, CDR3α,MHC) tuples, we set l and u to 100 and 5000, respectively. The l parameter
is a lower bound and ensures that the selected test peptides are paired with a sufficiently broad variety
of CDR3 sequences. The u parameter i an upper bound and allows to exclude test peptides that can too
quickly saturate the test budged, hence reducing the variety of test peptides. We create 5 different hard
splits, using 5 different random seeds for the sampling of the test peptides. For the creation of the hard

2 ERGO II: https://github.com/IdoSpringer/ERGO-II; NetTCR-2.0: https://github.com/mnielLab/NetTCR-2.0
3 Taken from the PUFFIN (29) repository: https://github.com/gifford-lab/PUFFIN/blob/master/data/
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training/test splits, we consider all positive samples, as well as the negative samples from the RN set, i.e.
excluding the negative samples from the negative assays. We refer to this type of split as HS(RN).

Table S2 describes the 5 HS(RN) hard splits for the (peptide, CDR3β) samples. It presents the lists
of test peptides and the number of positive and negative samples associated with each of them. Table S3
describes the 5 hard splits which we provide for the (peptide, CDR3β, CDR3α,MHC) samples.

3.2 Validation Approach and Performance Evaluation

For more robust performance evaluation, we repeat the experiments for each different training/test split
(i.e. 5 times). The area under the receiver operator characteristic (AUROC) curve (31, 32), the area under the
precision-recall (AUPR) curve (33, 34), the F1 score (F1) (35), as well as precision, recall and classification
accuracy are computed on the test sets and averaged.

We adopt the default configuration for both ERGO II and NetTCR-2.0, as proposed in their original
implementations. For ERGO II, we adopt the LSTM amino acid sequences encoder. The training is
performed for a maximum of 1000 epochs and, in order to avoid over-fitting, the best model is selected by
saving the weights corresponding to the epoch where the AUROC is maximum on the validation set. The
validation set is obtained via 80/20 stratified random split of the training set.

3.3 Training/Test Splitting Strategies in Related Works

In this section, we describe how ERGO II and NetTCR-2.0 perform training/test splitting and how this
differs from our approach.

Springer et al. (23) propose four different settings. In the Single Peptide Binding (SPB) setting, it is tested
whether an unknown TCR binds to a predefined target peptide; at training time, TCRs which are known to
bind to that peptide are employed. In the TCR-Peptide Pairing I (TPP-I) setting, which is comparable to
our RS, test peptides and TCRs can be observed at training time. In the TCR-Peptide Pairing II (TPP-II)
setting, test TCRs cannot be observed at training time, but peptides can. In the TCR-Peptide Pairing III
(TPP-III) setting, it is ensured that both test TCRs and test peptides are unseen, i.e. not included in training
tuples. Mismatched negative samples are derived from a randomization heuristic, analogous to how we
construct the RN set in this work.

Montemurro et al. (22) compute the peptide-specific Levenshtein distance among CDR3s. Using the
Hobohm 1 algorithm (36), redundancies among the CDR3s are removed. Five partitions are created to allow
cross-validation. Single-linkage clustering of the redundancy-reduced positive training data is performed
for partitioning and negative samples from 10X Genomics and randomization are added. For evaluating the
model, test data points are separated from the training data by a given Levenshtein similarity threshold, i.e.
samples with similarities to the training data above this threshold were removed. In contrast to our work,
Montemurro et al. (22) do not investigate generalization on unseen peptides.

4 RESULTS

Figure 2 shows test results for ERGO II and NetTCR-2.0, for the RS and HS splitting strategies, in both the
peptide+CDR3β and the peptide+CDR3β+CDR3α+MHC settings. We perform experiments considering
negative samples from the NA set only, from the RN set only and jointly from both the NA and RN sets.
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4.1 Over-optimistic Classification Performance due to Sequence Memorization

As depicted in Figure 2, almost perfect classification is achieved when training with negative samples
only from the NA set and testing using the RS(NA) split. As shown in Figure S2C and Figure S4C, when
considering negative samples from the NA set only, the binding and non-binding class histograms of the
CDR3 sequences are disjoint. Hence, models can learn to correctly map a large portion of test tuples
to the correct label simply by memorizing the CDR3 sequences, ignoring the peptide. We believe these
results are over-optimistic and should not be considered as the approximation of these models’ real-world
performance.

4.2 The Hard Split allows for Realistic Evaluation

Using the HS heuristic appears to make prediction on the test set consistently harder, if not impossible.
This tendency is observed in the peptide+CDR3β setting (Figure 2A and Figure 2B) and in the
peptide+CDR3β+CDR3α+MHC setting (Figure 2C and Figure 2D). In the peptide+CDR3β setting,
when testing the models using the HS(RN) split, the predictions on the test set barely exceed random-
level performance, i.e. almost no generalization to unseen peptides is occurring (AUROC ≈ 0.55). This
phenomenon is observed when the models are trained using negative samples from the RN set only, as well
as when using negative samples from both the RN and NA sets.

The effect of including negative samples from NA at training time does not significantly influence test
performance when the HS is adopted. Conversely, when RS is performed, significant differences are
caused by the utilization of the negative samples from NA. This reinforces our claims regarding sequence
memorization. ERGO II, in the peptide+CDR3β setting (Figure 2A), achieves over-optimistic performance
when the negative samples come from both NA and RN and testing is operated using RS(RN+NA). The
same phenomenon is observed in Figure 2B for ERGO II in the peptide+CDR3β+CDR3α+MHC setting
and in Figure 2D for NetTCR-2.0 in the peptide+CDR3β+CDR3α+MHC setting.

Figure S6 depicts NetTCR-2.0 results on the (peptide, CDR3β, CDR3α,MHC) samples, but ignoring
the MHC; we report these results for fairness, as NetTCR-2.0 is not originally designed to handle MHC
pseudo-sequences.

5 DISCUSSION

In this work, we aim to test the reliability of state-of-the-art deep learning methods on TCR-peptide/-pMHC
binding prediction for unseen peptides. To this purpose, we introduce the TChard dataset, which integrates
TCR-peptide/-pMHC samples from the IEDB, McPAS-TCR and VDJdb databases, as well as the MIRA
set and the 10X Genomics samples from the NetTCR-2.0 repository.

We perform experiments with two state-of-the-art deep learning models for TCR-peptide/-
pMHC interaction prediction, ERGO II and NetTCR-2.0. We study the peptide+CDR3β and the
peptide+CDR3β+CDR3α+MHC settings. We compare the effect of different training/test splitting
strategies, RS and HS. RS is a naive random split, while HS allows to test the models on unseen peptides.
We investigate the effect of training and testing the models using mismatched negative samples generated
randomly (RN), in addition to the negative samples derived from assays (NA).

As shown in our experiments, when the HS is performed, the two models do not generalize to unseen
peptides; this appears to be in contrast to the TPP-III results presented by Springer et al. (23). Conversely,
when a simple RS is employed and negative samples only belong to NA, almost perfect classification is
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achieved. We believe this phenomenon is due to the class distribution of the CDR3 sequences, and the
related sequence memorization. As shown in Figure 1C, when considering negative samples from NA
only, the positive and the negative samples are completely disjoint. Hence, a given CDR3 sequence is
only presented in either binding or non-binding samples. This leads to learning an inductive bias which
classifies tuples as binding or non-binding exclusively based on the CDR3 sequence, without considering
which peptide they are paired with; this appears to be confirmed also by the findings of Weber et al. (24).

In order to make progress towards robust TCR-peptide/-pMHC interaction prediction, machine learning
models should achieve satisfactory test performance on the hard training/test split (HS), which we propose
in this work. Only then, such models will be applicable for real-world applications, e.g. personalized cancer
immunotherapy and T cell engineering. Possible strategies to achieve this goal might require exploring
different feature representations, e.g. SMILES (37) encodings as proposed in TITAN (24). Further possible
methods might rely on physics-based simulations for the generation of large-scale datasets. Additionally,
transfer learning techniques (38) might allow to leverage knowledge from large databases of protein-ligand
binding affinity, e.g. BindingDB (39), which includes more than 1M labeled samples.
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FIGURE CAPTIONS
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Figure 1. Class distribution of (peptide, CDR3β, CDR3α) samples. (A) Negative samples only include
randomized negative samples (i.e. no negative assays). (B) Negative samples include negative assays and
randomized negative samples. (C) Negative samples only include negative assays.
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Figure 2. Test results for ERGO II and NetTCR-2.0 for TCR-peptide/-pMHC interaction prediction
trained and tested on TChard. AUPR: area under the precision-recall curve. AUROC: area under the
receiver operator characteristic curve. NA: negative samples from negative assays. RN: negative samples
from random mismatching. RS(·): random split. HS(·): hard split. Confidence intervals are standard
deviation over 5 experiments with independent training/test splits. (A, B, C, D) ERGO II and NetTCR-
2.0 results on (peptide, CDR3β) and (peptide, CDR3β, CDR3α,MHC) samples. Legend: Source of
training negatives | Training/test split. (E) Peptide-specific AUROC computed on the (peptide, CDR3β)
test set obtained with hard split 0 (see Table S2). (F) Peptide-specific AUROC computed on the
(peptide, CDR3β, CDR3α,MHC) test set obtained with hard split 0 (see Table S3).
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